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FINITE STRAINS OF VISCOELASTIC MUSCLE TISSUE* 

V.I. KONDAUROV and L.V. NIKITIN 

The mechanical behaviour of muscle tissue whose characteristic feature 
is the capacity to contract under the effect of factors of non-mechanical 
nature, is investigated. 

This research is an extension and development of the phenomenological 
model of the biologically active behaviour of a material under the joint 
action of mechanical forces and a signal of electrochemical nature /l/ in 
the finite-strain case. In addition, relationships of the relaxation 
type are used for both the viscous and biological strain components. 
Consequently, the current state of the muscle is determined by the pre- 
history of the strain and stimulation. The investigation is made in an 
isothermal approximation for a one-component transversally isotropic 
homogeneous medium. The constraints that impose invariance requirements 
with respect to certain body configurations on the structure of the 
rheological relationships are examined. Concepts of an ideal and re- 
inforcing biologically active viscoelastic material are introduced on 
their basis. 

The model of a muscle as a multiphase medium with chemical interaction between the phases 
was developed in /2-J/**.(**See also: Tsaturyan, A.K., Acontinuum model of the heart muscle 
and its experimental confirmation. Report ~0.2525, Scientific Research Institute of Mechanics, 
Moscow State University, 1981). Consequently, governing equations are obtained for muscle 
that are similar to /l/, and a decoding is given for the biological strain in terms of the 
model parameters. The dependence of biological strain on prehistory was taken into account 
in a linear approximation in /8/. 

The important case, from the viewpoint of applications, of small elastic and finite 
viscous and biological strains is considered in detail. It is shown that the approach 
utilized yields a single-valued solution of the problem of selecting the objective derivative 
in the rheological relationships that connect 'the rate of change of the stress tensor with 
the strain rates. As an illustration we coniider the axisymmetric problem of strain under 
the action of internal pressure on a cylinder from an ideal biologically active viscoelastic 
material. 

1. Kinematics. We utilize a representation of the total strain in the form of a 
composition of biological, viscous, and elastic strains to describe the large strains of a 
continuous medium that possesses viscoelastic properties and responds to a signal of electro- 
chemical nature. Let x be the reference, x the current body configuration and X E X, xi7 

x the radius-vectors of body particles in these configurations. As usual, we consider the 
mapping x+x to be non-degenerate and sufficiently smooth. Let F be the gradient of this 

. 
mapping, l.e., 

dx = FdX, detF # 0 (1.1) 

In addition to x and 'y. we introduce the intermediate configurations x1 and x2 belonging 
to non-Euclidean space in the general case. If X, and X, are radius-vectors of particles in 
the configurations x1 (X), x,(X) tangent to x,and x2 at the point X while B,P and E are 
the gradients of non-degenerate mappings x -xl (X),x,(X)-tx,(X),x,(x)~~, respectively, then 

dx=EdX,, dX,==PdX,. dX,= BdX, detE#O, 
detP#O, detB#O 

(2.9) 

It follows from (1.1) and (1.2) 
F=EPB (1.3) 

i.e.. the total strain gradient x-+X is the product of the mapping gradients %-+X7 x1+x,1 
and x+ xl7 which we will designate the elastic, viscous, and biological strains. 
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Relationships (l.l)-(1.3) are a natural extension of the description of the kinematics 
of a biologically active body proposed in /l/ for small strains of an elastic body, taking 
the so-called biofactor into account, to the finite strain case. 

It follows from the non-degeneracy of allthemappings that definite polar expansions 
hold in a natural manner 

F=RFUF, E=REUE. P=RpUp, B=RBUB (1.4) 

where RF, RE,RP,RB are orthogonal, and UE.,Ur,UP, LB are symmetric positive-definite 
tensors. 

We denote the particle velocity vector by v = axidt 1 _x and we recall the well-known 
kinematic relationship 

F'F-' = Vv (1.5) 
Here and henceforth, the dot denotes the derivative with respect to t for s = const and 

V is the gradient in the variables x. 
We stress the following features of the kinematics of the medium being studied. Firstly, 

the representation F in the form of the composition (1.3) does not mean that the total strain 
is ralized by successive development in time of first the biological, and then the viscous 
and the elastic. All three components develop simultaneously. The order of tracking the 
gradients E,P,B in (1.3) is not important, the model can be formulated with equal success 
on the basis of another decomposition. Secondly, the orthogonal tensors B,.Ra characterizing 
the rotation of the intermediate configurations enter into the composition (1.3) in addition 
to the "pure" strains Ur,UP,Us. Investigation of the general structure of the rheological 
relationships shows that the properties ofthemedium are determined by combinations of quan- 
tities that depend on both Ur,UP,UB and on BP, B,. 

It should also be noted that the representation (1.3) does not contain any partition 
"rules" and even constraints on the values of the non-degenerate tensors of second rank E, P, 
B. The situation here is completely analogous to the kinematics of elastic-plastic bodies 
in the sense that it is impossible to speak about the magnitudes of the strain components 
until the governing relationships, the conservation laws, and the boundary conditions have 
been taken into account. 

2. Rheological relationships. We limit ourselves to an isothermal approximation. 
We will consider the elastic potential A and the Cauchy stress tensor T to have the form 

A=A+(F,F,B,f), T=p(aA+/aF)Fr=T+(F,P,B,f) (2.1) 

where p is the material density in the current configuration. Among the arguments of the 
functionsA+and 'I+ in addition to the strain characteristics is the scalar quantity f (X7 t) 
that gives the stimulating signal that realizes the central regulation of the muscle activity. 

We will characertize the viscous properties of the material by the relation 

@(P',F,P,B, f) =0 (2.2) 

which yields the rate of production of the viscous strains. Therefore, the viscous strain is 
described by a functional since it depends on the prehistory of the arguments in (2.2). The 
particular form taken for the functional (2.2) describes a viscoelastic material of so-called 
relaxation type. 

The biological strain B is produced by the stimulating signal f(X, t). In order to 
outline this principal property of active biological strain, it was defined in /l, 9/ as the 
strain caused by a signal in the absenceofmechanical action, and therefore, is independent 
of the running state of the muscle. The same idea was propounded in /lo/. However, the 
feedback between the signal and the running state of the muscle, i.e., the local regulation 
of the muscle tissue, exists /ll/, in addition, the elastic and relaxation properties of the 
material can depend on f /12/. Therefore, for generality, the dependence of the biological 
strain on F and P should be taken into account. However, the fact that the state of muscle 
stress and strain depends very much on the prehistory of the stimulating signal, as follows 
from numerous experiments /ll-13/, is most important. 

We will take a governing relationship of relaxation type 

r(B’,F,P,B,f)=O (2.3) 

for the biological strain. 
The lack of an explicit dependence on X, t in (2.1)-(2.3) indicates that for f=O 

the governing equations will be invariant under shear in the time t and the particle X, i.e., 
the material in the passive state is a homogeneous, non-ageing viscoelastic material whose 
rheology is included in the general theory of governing equations /14, 15/. Since the signal 
f depends on X,t there is no invariance with respect to shear in X, t in the active state. 
This means that the material acquires inhomogeneity dependent on the time and the property 
of "ageing". Unlike media being considered in /16/, say, the "age" changes of such a material 
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are non-monotonic and reversible in time. 

The model of a biologically active continuous medium being considered can also be treated 
as the model of a traditional viscoelastic material formulated in the terminology of the 

"reference" configuration (RC), obtained from the natural biological strain configuration. 
In the general case of inhomogeneous biological strains, such an RC belongs to a non- 

Euclidean space and is variable in time. This specifies a definite similarity of the model 

under consideration with the models of elastic-plastic and viscoelastic media with instan- 
taneously elastic reactions, which are the theory of elastic bodies with RC in agreement with 
an unloaded configuration. 

In addition to this similarity, a clear distinction exists that is apparently due to the 
energy aspect of the problem. If plasticity and viscosity are related only to the trans- 
formation of work and internal energy into heat, then the strains of a biologically active 
medium are accompanied by transformations of chemical energy. Hence, inelastic strains or 
a change in the RC in pasticity models are determined just by thermomechanical processes and 
in this sense the model is closed. Models of biologically active media of a purely mechanical 
or thermomechanical nature without considering the processes of chemical energy transformation 
into other kinds are not closed in principle and contain a certain aribtrariness in the form 
of the given external effect of a non-thermomechanical nature. 

Let us now clarify the constraints that are imposed on the structure of the rheological 
relationships (2.1)-(2.3) by the requirements that the equations be invariant under certain 
transformations of the body configurations introduced. We will consider the following 
principles as valid for the media under consideration. 

lo. The governing Eqs.(2.1)-(2.3) are invariant relative to the full orthogonal group 
of transformations of the actual configuration. 

20. The form of (2.1)-(2.3) is invariant under unimodular, N, t -dependent configurations 
tangent to intermediate configurations and including the full orthogonal transformation group. 

3O. The governing relationships are invariant under the group of equivalent transformations 
of configurations tangent ot the RC. 

A tangent configuration is understood to be a configuration of a homogeneously strained 
body in whose particles the strains and electrochemical signal are constant in space and equal 
to the strains and signal in the particle X under consideration. The introduction of such 
configurations is due to the local nature of the dependence of the governing equations on the 
RC mapping y. into the actual and intermediate. 

Proposition lo expresses a weakened principle of objectivity or independence of the 
governing relationships from the body motion as a rigid whole without considering a time 

shift /15, 17/. The physical meaning of requirement 2O is that for configurations tangent 
to x1 and x,that belong to a Euclidean space and are the acutal body configurations subjected 

just to homogeneous biological or biological and viscous strain, independence of the governing 

equations is postulated as the minimum with respect to rotation of the body as a rigid whole. 

Condition 3O is the definition of the symmetry of an inhomogeneous material whose inhomogeneity 

is due to the signal 1(X, tj. 

Henceforth we will confine ourselves to the case of transversally isotropic media for 

which an undistorted RC x,, exists with an equivalency group g,, whose elements are either 

orthogonal tensors Q" describing the rotation around on axis given by the unit vector II, or 

all unimodular tensors Ii,, of transversally isotropic strain that have the form 

K,, 7 Qrz L',, CrtQ,,, Li,, = (a - a-':~) n 8 n + a-'jA1, a ;> 0 (Z./I) 

in addition to {1,-T), where I is a unit tensor of second rank. 

This enables us to determine the two most interesting classes of transversally isotropic 

biologically active viscoelastic media. One is given by the relationship 

g,, ~-mm dx, = a. g,,,- (Q., (a.;) 

and will be called the reinforcing material. 

The necessary and sufficient conditions for invariance of the governing equations (2.1)- 
(2.3) with respect to the transformation group (2.5) of the configurations xg, XG (a = 1, 2) 
and invariance with respect to orthogonal transformations of the configuration i( are the 
conditions 

A =- A”(.i,,). T-m RFT'(A,)RE7, 11" =Y'(.\,,), 1'1,'-: W(;\,) (2.G) 

where A’, T", Y and !Z are functions that are isotropic with respect to the full orthogonal 

groupo, i.e., 
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(Q a= o is an arbitrary constant orthogonal tensor). 
Under the assumption that f is an objective scalar, the proof of the necessity and 

sufficiency of conditions (2.6) and (2.7) is analogous to that presented in /18/ for the case 
of isotropic viscoelastic media N> 1 by intermediate conf@urations. 

We will call a second, narrower classof media ideal transversally isotropic biologically 
active viscoelastic materials. It is assumed for suchmedia that the biological strain is 
isochoric, i.e., B is a unimodular tensor while the elastic potential, stress, and rate of 
vioscous strain are explicitly independent of the signal f, 

The transformation group for the configuration ice and xq for which (2.1)-(2.3) are 
invariant, is postulated in the form 

gX, = g,, = 0, &. = {I%,) (2.8) 

And we shall consider that the biological strain LB does not alter the transversal 
isotropy of the material. This means that just as the tensor u,, given by (2.4), the tensor 

II, is determined in terms of one scalar and has the form 

UB = ((02 - w-l)11 8 11 + w-11, w = (0 (X, t)> 0 (2.9) 

The conditions 

A .= (l* (A,), T= RT+ (‘2,) Rr 
W' L= Y*(R+), W‘trl-'= W+ (ii+,/) 

where A”,‘p, yt and f2' are functions isotropic with respect 
i.e., 

(2.10) 

to the full orthogonal group o, 

A+(A,Q)= A+(A+), T+(n+o)=QT+(,2,)Qr, (2.11) 
Y+(h+o)== QY+(R+)Qr, O*(.\+Q,f)= $1’ (A,,/) 
n+=(V, W, n), A+u = {QVQr,QWQT, Qn}, 
V=R$Rp?‘UERpRH, W=RsTC,RU, R==RERpRB 

are necessary and sufficient conditions for indifference of the governing equations (2.1)- 
(2.3) with respect to orthogonal transformations of the actual configuration and invariance 
under the transformation group (2.8). 

The proof of assertions (2.8) and (2.9) is analogous to that in /18/ as in the case of 
reinforcing materials. 

3, Small elastic strains. For brevity we use the notation S = WUn, S+ ST. The 
gradient of the total strain F can then be written in the form of the product F =RVS. We 
introduce the elastic strain tensor 

c= '/z(V2 - I)_= '/z(S-'rFrFS-' - I) (3.1) 

defined uniquely by the tensor V and agreeing with the Cauchy-Green strain tensor for S = I. 
It is possible to transfer from the arguments (V, W,n) to the variables (C, W,n) in the 
rheological relationships for an ideal material. 

Taking account of (3.1) the relation T = p(aAlaF)FT between the stress tensor and the 
elastic potential can be reduced to the form 

p-IT= FS-'(BA+/BC)S-l*Fr=RV (i3A’jK) VRr = (3.2) 
R (I + 2C)"* (aA+/aC)(I + 2C)'izRr 

In addition to the tensor c the tensor 

e= F-'TS'CSF-'r='/,R(I - V-")Rr z ',$(I - F_'TSrSF-') (X3) 

that agrees with the Almansi tensor for S = I will be useful in later constructions. 
A relationship connecting the rate of change of a tensor e with the total strain rate 

of the tensor S 

e'+ e(F'F-'_ FS-‘S’F-1) + (F-1rF.r -F-lTSrS-lrFr)e~ (3.4) 
'/*(Cv + VP)- ',2 (FS-'SF-1 + F-‘T3TS-1TFT) 

is derived by direct differentiation of the tensor e with respect to time taking the kinematic 
relationship (1.5) into account. 

The case is later considered when the elastic strain tensors are small compared with 
one, i.e., ~lCll<l, Ilell<~. II~II = 1 -I--O(Ilell), and the rotations R, the viscous W and the 
biological o strains are arbitrary. This case is typical for the muscle material whose 
designation with respect to small stresses (as compared with the elastic moduli) causes 
finite displacements of the body parts. 
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In addition, we assume that (2.8) has the form 

A = AX (C, n), IW s ‘iz (WW-’ + W’W’) ~: ax (C, II); (33) 

de t \V ~-~ 1, (0 7: (OX (f (X, 1)) 

where Dcp) is the viscous strain rate tensor. These assumptions mean that the potential depends 
only on the elastic strains, and the viscous compressibility can be neglected: the biological 
strain is determined solely by the electrochemical signal f (central regulation), and the 
symmetric tensorDcP), whose trace equals zero, is used asameasure of the viscous strain rate. 

Selection of the tensor D(p) as the measure of the viscous stain rate means the a priori 
assumption of the kind of function I+ (V, W,n) in relationships (2.101, namely, the function 
w+ is a solution of the equation 

\Ip+W-’ _t W--‘I+ = 2@X (C, n) 

By virtue of the positive definiteness of the symmetric tensor W the solution of this 
matrix equation exists and is unique for arbitrary right side. 

Also assuming that the intermediate configuration x,is unloaded, i.e., the stress T = 0 

for C = 0, while the isotropic potential A” is a regular function in neighbourhood of C = 0, 
we obtain to the accuracy of the terms 0 (CT 

poA' = A,, + VahZ, + pZ, + a,Z,Z, + ‘lza,Z,* + a,Z, ,(3.6) 

I, = tr C, I, = tr Cz, I, = nCn, I, = nCan 

where h, p,at = const and p0 is the initial density of the material. 
If the material is incompressible, then I, ~0 and the potential is 

poA” = A, + pJ, i- ‘/,a,J,” + a,J, 

J, = tr (C')z, J4 = nC'n, J, = nC’C’n, C’ = C - ‘/,I tr C 
(3.7) 

Using the relation e = RCRr i-0 (e") we obtain from (3.2) and (3.6) to the accuracy of 
first-order infinitesimal terms 

T=GZr + all,)1 + +e + (a,Z, + a,Z,)m 8 m + 
a,(m@l+l@m) (m=Rn, l=em=RCn) 

(3.8) 

In the case of an incompressible material 

T = - p,I + pOR (ailxjacj RT ‘= - p,I + 2pe i- 

a,Z, (m @ m - l/J) + a3 (m @ I + 1 $3 m - 2/3Z,I) 
.(X9) 

As might have been expected, the Cauchy stress tensor in the model under consideration 
is defined by the tensor e dependent only on the elastic gradient E and the unit vector m 
giving the axis of transversal isotropy whose position in the actual configurationisdetermined 
by the orthogonal tensor R. 

We now consider the law of viscous flow (the second equation in (3.5)). We assume that 
Q' = a&/X, i.e.,@,' is the gradient of a sufficiently smooth scalar function ii = 6 (C, n). In 
the neighbourhood of e = 0 the latter has the form 

6 = V&Z,2 + BZ, + BrZrZ~ + l/,B,Z, + l&Z5 + 0 (e") 

The equalities 

3Bh + 28 + I31 = 0, 38, + Pa + BP, = 0 

follow from the condition tr@' = 0 of viscous incompressibility, and we obtain 

W (e, m) = R@X (C, n) RT = 2s (e - 1/aZ,I) +- (3.10) 

(I%4 - yZ1) b @ m - %I) + f4 b 8 1 + 1 @ m - %U) -t-W) 

when we take them into account. Here and henceforth Y = '/s(pa f 28,). In the case of small 
elastic strains the kinematic relationship (3.4) obtains a substantial simplification. Indeed, 
asee we have 

FS-*S’F-l = G + eG - Ge + 0 (ea) 

F’F-1 = R’RT + G + 0 (e), G = RSYIRT 

Then to the accuracy of terms O(ea) the equality (3.4) is written in the form 

e' + e {R’RT + *j2 (G - GT)} - (R’RT + ‘/a (G - GT)} e = 

‘/z (Vv +.V+) - ‘/z (G + GT) 
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taking into account that 

R’RT -I- ya (G - GT) =1/8 (Vv - VvT) + 0 (e) 
‘/2 (G f GT) = R (D(p) + WD@)W-‘) RT 

where D!P)is defined by the second of relationships (3.51, and the symmetric deviator tensor 

D(B) = ‘/z (U,‘U; + U;‘U,‘) = Qo’o-~ (3~ @ II - I) 

is the tensor of the biological strain rate by definition, we obtain to O(e’) accuracy 

De/Dt =1/z (Vv + VvT) - 0X (e, m) - RWD(B)WvlRT (3.11) 

(DelDt is the Jaumann objective derivative). 

4. Example. We consider the quasistatic axisymmetric problem /9, 10, 19, 20/ of the 
strain of a circular thick-walled cylinder from an ideal biologically active viscoelastic 
material subjected to internal pressure. We assume that the axis of transversal isotropy of 
the material is directed along the tangent perpendicular to the cylinder axis. This case is 
characteristic for blood vessels whose walls contain smooth muscle with fibresinthecircum- 
ferential direction. We neglect mass forces, we consider the material as incompressible, the 
elastic strain small, and the viscous and biological finite. We take the reference configura- 
tion of the cylinder natural , and the stress and displacements therein equal to zero. 

We select a cylindrical R,cp,Z coordinate system with the Z-axis directed along the 
cylinder axis. It is assumed that the axial displacements equal zero, i.e., all the sections 
2 = const are under plane strain conditions. Because of the axial symmetry there are also no 
angular displacements. 

Let r, T, 2 be the coordinates of a material particle in the reference configuration, a 
the radius of the inner, and b the radius of the outer surface of the cylinder for t=O. Then 
the domain of definition of the solution has the form (a<~< b, t>O). Let u~,(T~,(T~ be the 
physical components of the Cauchy tensor in an Euler R,cp,Z coordinate system, u = aR tr, o/at 
is the particle radial velocity, eR, eo,ez are non-zero diagonal elements of the matrix of 
physical components of the elastic strain tensor e. We consider the quantity (v, ea, eT> ez' R, ~a) 
as a vector of the solution. 

The initial conditions of the problem are 

" = en = em = er = Pa = 0 

R (r, 0) = r, a < r < b, t = 0 

(4.1) 

The boundary conditions corresponding to the pressure-pp,(t), p,>Oon the inner and -pa(t), 
Pa >O on the outer cylinder surfaces , will be the conditions 

OR (e,, e.r, PO) = --P1 (a r = a, : > 0 (4.2) 

uR (eR, cr. PO) = -~a (t)> r = h t > 0 

Taking account of the symmetry of the problem we have 

or) = DLJV = _-l/&r) = -_o'o-l, R = I, F, = aR/ar 

Fq = R/r, Fz = 1, F,j = 0, i #j 

where o is a known function of r, t. 
We use the notation 

a = I/* (a* + Za,), v = % (I& + %J,). Y (rr t) = 0' (r* t) 0-l (r, Q 

The complete system of equations is written in the form 

aqaR + ((rR - Q/R = 0 

+' = au/as - 2peR + ve, + y, Q' = v/R - Z&,e, - 27 

e,' = -2i?.ez+ vep + Y (Ba = B + VI 

av/aR + v/R = 0, R' = v 

OR = -_po + 2pen - a+ ow= --Po + 2 tp+ 4 eq’ 

or = -pp+ 2pez - aerp 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Here (4.3) is the equilibrium Eq.(4.4), is (3.12) for compatibility of the strains and 
velocities converted taking (3.10) into account, (4.5) is the condition of incompressibility 
and the definition of the material particle velocity, and (4.6) is the relation between the 
physical components of the Cauchy stress tensor and the small elastic strains. 

From the incompressibility condition (4.5) and the initial data (4.1) it follows that 
(c(t) is a still unknown function of time) 
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/’ = I,‘$’ (i,; /I (r, 1), c’ (li) = 0 

Setting c (0) = 0 without loss of generality, we obtain from the second 
and the initial condition 

/I (I., f) = 1/+ -/ c (/) 

Taking account of the initial data (4.1) and (4.7) and (4.8), Eqs.(4.4 

P$ (r. I) = ', (I, 1) - "p"h-"lp - 2K,y 

ek (r, f) = -'P (r, 2) + (fiK + &K,) 0' -i_ li,y 

'p (r, t) = ln (r_'Ii (r, t)) =: '/* lu. (1 _t r.-Jc (1)) 
t t 

li"'P Z 1 exp (2fio (5 - 91 9 b-9 4) dS, h’yr = 1 =P [2P (4 - t)l ‘p (~3 fJ dE 
” ” 

) yield 

Taking account of (4.6), (4.8) and (4.9) the equilibrium equation reduces to 

aoR/ar = 2p+ exp 1-2~ (r, 41 ((1 + 11) ‘P (r, t) - [OK + (1 t 
9) hJLJ q - (1 + 2rl) &yl, rl = 1 + ww 

Integrating with respect to the radius and taking the boundary conditions (4.2) on the 
inner and outer surfaces into account, we arrive at a non-linear integral equation 

(1 + 1)) + (t) - (BK + (1 + 2rl) BoK,) + = '/&'AP + (1 + 2rl) &U (4.10) 

Q(t) = s exp[- 2rp((r, t)] e(r, t)r-1 dr 
a 
b 

G (1) = s exp [- 29 (r, t)] y (r, t) r-1 dr 

where Ap=Rl(f) -p*(t) is the pressure drop on the vessel wall. 
If the displacements are small together with the biological strain, i.e. c (t) 4 & y (r, 

t)<l, then to the accuracy of terms 0 (W) 

and after differentiation with respect to the time we obtain from (4.10) 

CO + 2mc' = p (t) 
m = fi + l/Zv/(i + ?j), 4 (t) = lg" (Q + 2 (B + Ba) g' (t) f 
4BBaP Wl/(l + 11) 

The solution of this equation that satisfies the initial conditions c(O)=c'(O)=O is the 
following: 

f E 
c (1) = 1 cxp [2m(F - t)]l&)dsdS 44.11) 

0 0 

For times tel/& when viscosity effects can be neglected, we have the bioelastic approxi- 
mation /l/. 

It is seen from solution (4.11) that the condition q(t)<0 is a condition for the 
appearance of the Bayliss effect /21/: the diminution in the clearance of a vessel due to 
feedback for a quasistatic growth of the intravascular pressure. If the quantity u(r.t)~; y(t)< 
0, i.e., is identical at all points of the vessel wall , then the condition q(t)<0 reduces to 
the equality 

I v (t) I > [P (1 + 271) ln (b/41-’ CAP’ W + @AP 0)) 

connecting the rate of change of the biological strain with the current value of the pressure 
drop and its rate of change. 

1. 

2. 
3. 
4. 
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EQUILIBRIUM AND STABILITY OF NON-LINEARLY ELASTIC BODIES 
WITH CAVITIES CONTAINING FLUID* 

V.A. YEREMEYEV and L.M. ZUBOV 

Boundary conditions are formulated on the surface of a cavity filled with 
a compressible fluid or gas for the equilibrium problem of an elastic 
body experiencing large deformations. A formulation is given of the 
stability problem for the equilibrium of a non-linearly elastic body with 
fluid inclusions. The stability problem is solved for a thick-walled 
closed spherical shell filled with gas and loaded by external pressure. 

1. We consider an elastic body occupying a volume v in the reference configuration. Let 
the boundary of the domain v consist of m + 1 closed surfaces U, cl, . . . . Urn, where Uk (k = 1, 
2 ) . . . 4 are surfaces of simply-connected cavities, and rJ = a' u (JI is the outer boundary 
enclosing the body with the cavities. Each cavity is filled entirely with a compressible 
barotropic homogeneous liquid or gas. The body is deformed under the action of external 
forces distributed over parts of the surface u'. Displacements are given on the surface u*. 
We neglect the action of the mass forces. The pressure of the liquid is constant in each of 
*Prikl.Matem.Mekhan.,51,3,453-457,1987 


